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Abstract
We consider multidimensional systems of PDEs of generalized evolution form
with t-derivatives of arbitrary order on the left-hand side and with the right-hand
side dependent on lower order t-derivatives and arbitrary space derivatives. For
such systems we find an explicit necessary condition for the existence of higher
conservation laws in terms of the system’s symbol. For systems that violate
this condition we give an effective upper bound on the order of conservation
laws. Using this result, we completely describe conservation laws for viscous
transonic equations, for the Brusselator model and the Belousov–Zhabotinskii
system. To achieve this, we solve over an arbitrary field the matrix equations
SA = AtS and SA = −AtS for a quadratic matrix A and its transpose At ,
which may be of independent interest.

PACS number: 02.30.Ik

1. Introduction

It is well known that conservation laws are of fundamental importance for clarifying the
structure of PDEs. In particular, a common feature of soliton equations is to have conservation
laws of arbitrarily high order. Existence of higher order conservation laws imposes very
strong conditions on a system of PDEs. Explicit formulation of these conditions would help
to classify integrable systems of a given type.

The straightforward study of the conserved current condition is hampered by the fact that
one is interested in equivalence classes of conserved currents modulo trivial ones. Therefore,
it is convenient to switch from a conserved current to its characteristic, which is the same for
equivalent currents and satisfies the equation adjoint to the linearization of the initial system
[1, 2, 8, 12].
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Thus a part of the problem is to determine conditions for the adjoint linearized equation
to have higher order solutions χ . In the present paper we perform the first natural step in this
direction. For determined, possibly multidimensional, systems of PDEs we find the conditions
imposed on the symbol of the system by the fact that some higher order vector-functions satisfy
the adjoint linearized equation modulo lower order terms.

More precisely, we consider systems of generalized evolution form

∂hui

∂th
= F i

(
xj , t,

∂sua

∂ts
,

∂i1+···+inub

∂x
i1
1 · · · ∂x

in
n

)
(1)

i, a, b = 1, . . . ,m j = 1, . . . , n s = 0, . . . , h − 1 i1 + · · · + in � N

with t-derivatives of fixed order h > 0 on the left-hand side and with the right-hand side
dependent on lower order t-derivatives and arbitrary space derivatives.

To any m-component vector-function χ of the variables xj , t, u
i and their derivatives, we

associate its symbol with respect to the space variables xj , which is an m × m matrix, whose
entries are homogeneous polynomials in n variables of degree equal to the order o(χ) of χ

with respect to xj .
Let A be the symbol of the right-hand side of (1), and S be the symbol of the characteristic

χ of a conservation law for (1). It turns out that if o(χ) > O , where O � N is some constant
associated with (1), then the adjoint linearized equation implies the matrix equation

SA = (−1)N+hAtS. (2)

Here and below At is the transpose of A.
A linear algebra problem arises naturally: for what matrices A does there exist a nonzero

matrix S such that (2) holds? In addition, since for known integrable systems there are normally
higher conservation laws with nonsingular S, one is also interested for which A the matrix S
can be taken nonsingular, i.e. when the matrices A and ±At are similar (conjugate).

In solving these problems there is a difference between the cases n = 1 and n > 1. If
n = 1, one can switch from homogeneous polynomial in one variable matrices A and S to the
corresponding matrices of coefficients and, allowing the coefficients to be complex, make use
of the Jordan normal form [3]. While if n > 1 then the entries of the matrices belong to the
field of rational functions in several variables, which is essentially not algebraically closed,
hence the Jordan normal form is not generally applicable. Using more sophisticated algebraic
technique, we prove the following effective criteria.

Theorem. For any m×m matrix A with entries from an arbitrary field F and the characteristic
polynomial d(λ) ∈ F [λ] we have the following.

(1) The matrices A and At are always similar.
(2) A nonzero m × m matrix S such that SA = −AtS exists if and only if the polynomials

d(λ) and d(−λ) have a common divisor of positive degree.
(3) The matrices A and −At are similar if and only if all the invariant factors di(λ) of A

(certain divisors of the characteristic polynomial [4]) satisfy di(−λ) = (−1)deg di (λ)di(λ).
In particular, d(λ) = (−1)deg d(λ)d(λ), which in the case charF �= 2 implies trA = 0 and,
if m is odd, det A = 0.

Statements 2 and 3 of the theorem give a necessary condition for the existence of higher
conservation laws for systems (1) with odd N + h. In particular, a scalar equation (m = 1) of
the form (1) with odd N +h cannot have conservation laws of order greater than O. For different
ways to write system (1) in the generalized evolution form the symbols A and the resulting
conditions are generally different. In order to have higher conservation laws, a system of PDEs
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must satisfy all conditions obtained from various ways to write it in the generalized evolution
form.

Let us discuss the previous research on this subject. It seems that only evolution systems
(h = 1) in one space variable (n = 1) were studied in this respect. For such systems
equation (2) was obtained using a similar technique to that used in [6] and rediscovered in [3].
In [6] it is noticed that SA = −AtS for nonsingular S implies det(A+λI) = (−1)m det(A−λI),
which is a weaker version of our statement 3. Here and below I is the unity matrix. In [3]
statement 2 is proved for complex matrices, and the corresponding necessary condition for
the existence of conservation laws of order greater than the order of the evolution system
is formulated. Even in this simplest case our result is stronger, since the upper bound O is
normally much smaller than the order of the system (see the examples in section 7).

The paper is organized as follows. In section 2 the method of characteristics of
conservation laws is recalled. We specify the method for systems of generalized evolution
form in section 3 and derive equation (2) in section 4. The above theorem on quadratic matrices
is proved in section 5. In section 6 we explicitly formulate the obtained necessary conditions
for existence of higher conservation laws. Finally, section 7 contains some mathematical
physics equations of the form (1), which violate these conditions and, therefore, do not have
conservation laws of order greater than O. This result allows us to describe all conservation
laws for two basic equations in the theory of viscous transonic gas flows (see, for example,
[5, 7, 9, 11] and references therein) and for two popular reaction–diffusion systems: the
Brusselator model and the Belousov–Zhabotinskii system [10, section 15.4].

2. Characteristics of conservation laws

This is a brief review of the method of characteristic for computation of conservation laws.
We refer to [1, 2, 8, 12] for more details.

Consider a system E of differential equations

Fs

(
yi, v

j , . . . , vk
I , . . .

) = 0 s = 1, . . . , p (3)

with independent variables y1, . . . , ya , unknown functions v1, . . . , vb and

vk
I = ∂ |I |vk

∂y
i1
1 . . . ∂y

ia
a

I = (i1, . . . , ia) ∈ Z
a
+

being their derivatives. Here and below Z+ is the set of nonnegative integers and |I | =
i1 + · · · + ia.

Let F be the algebra of smooth functions of the variables yi, u
j and u

j

I . Although the
whole set of the variables is infinite, each function is supposed to depend only on a finite subset.
Denote by FE the quotient algebra with respect to the ideal I generated by the left-hand sides
of equations (3) and their differential consequences Dyi1

. . .Dyik
(Fs) ∈ F . Here

Dyi
= ∂

∂yi

+
∑
j,I

u
j

I+1i

∂

∂u
j

I

is the total derivative with respect to yi , where 1i is the multi-index with 1 at the ith place, the
other indices of 1i being zero. For two equivalent functions f1, f2 ∈ F, f1 − f2 ∈ I, one has
f1(yi, v

j (yi)) = f2(yi, v
j (yi)) for any local solution vj (yi) to (3).

By definition, the ideal I is invariant under the action of Dyi
, which, therefore, defines

a derivation D̄yi
of FE . A conserved current for (3) is an a-tuple J = (J1, . . . , Ja), where

Jk ∈ FE , that satisfies the equation
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a∑
i=1

D̄yi
(Ji) = 0. (4)

A conserved current is called trivial, if it has the form

Jk =
∑
l<k

D̄l(Llk) −
∑
k<l

D̄l(Lkl)

for some functionsLkl ∈ FE , 1 � k < l � a. Two conserved currents are said to be equivalent
if they differ by a trivial one. Conservation laws are defined to be the equivalence classes of
conserved currents.

Let J̃ k ∈ F be such that Jk = J̃ k + I. Identity (4) means that
a∑

i=1

Dyi
(J̃ i ) =

∑
s,I

gs
I D

I
y (Fs) (5)

for some functions gs
I ∈ F , only a finite number of which are nonzero. Here and in what

follows for each multi-index I = (i1, . . . , ia) we denote DI
y = Di1

y1
. . .Dia

ya
. Consider the

functions

χ̃ s =
∑

I

(−1)|I |DI
y

(
gs

I

)
s = 1, . . . , p. (6)

Generally speaking, representation (5) and functions χ̃ s are not uniquely defined by the
conserved current J . Assume that system (3) is nonoverdetermined and nondegenerated [1, 8],
then the corresponding elements χs = χ̃ s + I of FE are well defined by J and are all zero if
and only if J is trivial. The p-tuple χ = (χ1, . . . , χp) is the same for equivalent conserved
currents and is called the characteristic (or generating function [1, 12]) of the corresponding
conservation law.

In addition, χ satisfies the adjoint linearized equation

K(χ) = 0 (7)

where K is the b × p matrix differential operator with the entries

[K]ij =
∑

I

(−1)|I |D̄I
y ◦ ∂Fj

∂vi
I

. (8)

The homological interpretation of these concepts can be found in [1, 2, 12].

3. Formulae for systems of generalized evolution form

Consider a system E of m partial differential equations in n + 1 independent variables
t, x1, . . . , xn and m unknown functions u1, . . . , um of the form

∂hui

∂th
= F i i = 1, . . . ,m (9)

where F i are smooth functions of the variables xj , t, u
a and the following derivatives:

∂i1+···+inub

∂x
i1
1 . . . ∂x

in
n

i1, . . . , in ∈ Z+
∂sua

∂ts
s < h. (10)

For each multi-index I = (i1, . . . , in) ∈ Zn
+ and integer s � 0 we denote

ui
s,I = ∂ |I |+sui

∂ts∂x
i1
1 . . . ∂x

in
n

. (11)

Let us describe the algebra FE for this system. By induction on s, it follows from (9) that the
derivatives ui

s,I with s � h are expressed in terms of

t, xj , ui
s,I s < h. (12)



Conservation laws for multidimensional systems and related linear algebra problems 10611

Therefore, for each function of t, xj , u
i and arbitrary derivatives (11) there is a unique

equivalent modulo (9) function of variables (12). Thus we can identify FE with the algebra of
smooth functions of variables (12). Below all functions are supposed to be from FE .

The restrictions D̄xi
, D̄t :FE → FE of the total derivatives are written in coordinates (12)

as follows:

D̄xi
= ∂

∂xi

+
∑
k,I,s

uk
s,I+1i

∂

∂uk
s,I

D̄t = ∂

∂t
+

∑
k,I,s<h−1

uk
s+1,I

∂

∂uk
s,I

+
∑
k,I

DI
x (F

k)
∂

∂uk
h−1,I

.

(13)

The equation D̄tJ0 +
∑n

i=1 D̄xi
Ji = 0 for a conserved current J = (J0, J1, . . . , Jn) implies

the identity

DtJ0 +
n∑

i=1

Dxi
Ji =

∑
i,I

∂J0

∂ui
h−1,I

DI
x

(
ui

h,0 − F i
)

which is the specification of (5) for system (9). According to general formula (6), the
characteristic χ = (χ1, . . . , χm) is computed as follows:

χi =
∑

I

(−1)|I |D̄I
x

(
∂J0

∂ui
h−1,I

)
. (14)

From (7) and (8) we see that the characteristic regarded as a column vector satisfies the
equation

(−1)hD̄h
t (χ) = L(χ) (15)

where L is the m × m matrix differential operator with the entries

[L]ij =
∑

I

(−1)|I |D̄I
x ◦ ∂F j

∂ui
0,I

+
h−1∑
s=0

(−1)sD̄s
t ◦ ∂F j

∂ui
s,0

. (16)

4. Solving the adjoint equation for the highest order terms

For a (vector-)function f the maximal integer k such that ∂f /∂ui
s,I �= 0 for some 0 � s < h,

1 � i � m, |I | = k is called the order of f and denoted by o(f ). If ∂f /∂ui
s,I = 0 for all

s, i, I then we set o(f ) = −1. The maximal integer s < h such that ∂f /∂ui
s,I �= 0 for some

1 � i � m, |I | = o(f ) is denoted by t(f ). The order of the characteristic of a conservation
law for (9) is called the order of the conservation law.

Consider the ring F[q1, . . . , qn] of polynomials in n variables with F as the ring
of coefficients. For each multi-index I = (i1, . . . , in) denote by qI the monomial
q

i1
1 . . . qin

n ∈ F[q1, . . . , qn]. For any k-component vector-function χ = (χ1, . . . , χk) and
two integers a, b � 0 let Sa,b(χ) be the k × m matrix with the entries

[Sa,b(χ)]ij =
∑
|I |=a

∂χi

∂u
j

b,I

qI ∈ F[q1, . . . , qn].

We call the nonzero matrix So(χ),t(χ)(χ) the symbol of χ and denote it by Sχ .
Let A be the symbol of the right-hand side (F 1, . . . , Fm) of (9) and set N =

o(F 1, . . . , Fm) > 0. By assumption (10), one has t(F 1, . . . , Fm) = 0. Therefore, by
definition,

[A]ij =
∑

|I |=N

∂F i

∂u
j

0,I

qI . (17)
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Applying the Leibniz rule, differential operators (16) can be uniquely rewritten in the
usual form

[L]ij =
∑

|I |�N

f
ij

I D̄I
x +

∑
s<h

gij
s D̄s

t .

In particular, from definition (16) one has

f
ij

I = (−1)N
∂F j

∂ui
0,I

∀I : |I | = N. (18)

We set

O = max
i,j,I,s

{−1, o
(
f

ij

I

) − N, o
(
gij

s

) − N
}
. (19)

From definition (16) it follows that O � N .

Theorem 1. Let χ be the characteristic of a conservation law for (9). If o(χ) > O then we
have

SχA = (−1)N+hAtSχ . (20)

Proof. Set a = N + o(χ), b = t(χ) < h. Equation (15) implies, in particular,

(−1)hSa,b
(
D̄h

t (χ)
) = Sa,b(L(χ)). (21)

Set

� =
∑

k,I,s<h−1

uk
s+1,I

∂

∂uk
s,I

.

Clearly, for any vector-function ψ with o(ψ) � 0 and t(ψ) < h − 1 we have

o(�(ψ)) = o(ψ) t(�(ψ)) = t(ψ) + 1 S�(ψ) = Sψ . (22)

By formula (13) and assumption (10), for any vector-function χ with o(χ) � 0 the vector
function D̄h

t (χ) does not depend on the coordinates u
j

s,I with |I | > a or |I | = a, s > b.
Moreover, from the whole expression

D̄h
t (χ) =

(
∂

∂t
+ � +

∑
k,I

DI
x (F

k)
∂

∂uk
h−1,I

)h

(χ)

only the part

�b ◦
(∑

k,I

DI
x (F

k)
∂

∂uk
h−1,I

)
◦ �h−1−b(χ)

contributes to Sa,b
(
D̄h

t (χ)
)
.

Therefore, by the definition of Sa,b, properties (22) and formula (17), we obtain

Sa,b
(
D̄h

t (χ)
) = Sa,b

(
�b ◦

(∑
k,I

DI
x (F

k)
∂

∂uk
h−1,I

)
◦ �h−1−b(χ)

)

= Sa,0


 ∑

k,|I |=o(χ)

DI
x (F

k)
∂χ

∂uk
b,I


 = SχA. (23)

Now let us compute the right-hand side of (21). In the case o(χ) > O only the part∑
|I |=N f

ij

I D̄I
x of [L]ij contributes to Sa,b(L(χ)), since D̄s

t (χ) for s < h does not depend on
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u
j

p,I with |I | = a, p � b and the number a is greater than the order of any coefficient f
ij

I or

g
ij
s . Therefore, taking into account formulae (18) and (17), we obtain

Sa,b(L(χ)) = (−1)NAtSχ .

Combining this with (23) and (21), one gets (20). �

In the following section we study the conditions imposed on A by equation (20).

5. Linear algebra problems

For a ring R we denote by Mk(R) the ring of k × k matrices with entries from R. Consider an
arbitrary field F and denote by F̃ its algebraic closure, i.e. the minimal algebraically closed
extension of F.

Theorem 2. Let A ∈ Mk(F) and let d(λ) = det(A − λI) be the characteristic polynomial of
A. A nonzero matrix S ∈ Mk(F) such that

SA = −AtS (24)

exists if and only if the polynomials d(λ) and d(−λ) have a common divisor of positive degree.
Equivalently, there are two roots λ1, λ2 ∈ F̃ of d(λ) such that λ1 + λ2 = 0.

Proof. The polynomials d(λ) and d(−λ) have a common divisor of positive degree if and
only if they have a common root λ in F̃ , i.e. both λ and −λ are roots of d(λ).

If (24) holds then, for any matrix similar to A,A′ = CAC−1, C ∈ Mk(F), one has
S′A′ = −A′t S′ with S′ = C−1t

SC−1. Let us regard A as a matrix from Mk(F̃ ) ⊃ Mk(F).
Then we can assume A to be in the Jordan normal form. For such A one can easily show that
the linear map

Mk(F̃ ) → Mk(F̃ ) S �→ SA + AtS

has a nontrivial kernel if and only if there are two eigenvalues λ1, λ2 ∈ F̃ of A such that
λ1 + λ2 = 0 (see [3] for F = C).

It remains to prove that if (24) holds for some S ∈ Mk(F̃ ) then there is nonzero S′ ∈ Mk(F)

such that S′A = −AtS′. Consider a (possibly infinite) basis {ai} of F̃ regarded as a vector
space over F. One has S = ∑

i aiSi , where Si ∈ Mk(F). Since A ∈ Mk(F), equation (24)
implies SiA = −AtSi . �

Recall some criteria for two matrices A,B ∈ Mk(F) to be similar (see, for example,
[4, ch 13]). Consider the ring F [λ] of polynomials in one variable. A matrix C ∈ Mk(F [λ])
is said to be unimodular if det C is nonzero and belongs to F. For any matrix A ∈ Mk(F) the
matrix A − λI ∈ Mk(F [λ]) admits a canonical decomposition

A − λI = C1DC2 C1,D,C2 ∈ Mk(F [λ]) (25)

such that C1, C2 are unimodular, while D is diagonal. Moreover, the polynomials di = [D]ii
have the leading coefficient 1, and di+1 is divisible by di for each i = 1, . . . , k − 1. Then the k
polynomials di are defined uniquely by A and are called the invariant factors of A. Note that
there is a simple procedure to compute the invariant factors [4, ch 13].

Proposition 1 ([4, ch 13]). Two matrices A,B ∈ Mk(F) are similar if and only if they have
the same invariant factors.

We call a polynomial d(λ) = ∑
i aiλ

i ∈ F [λ] skew if d(−λ) = (−1)deg d(λ)d(λ), i.e. for
all i ≡ deg d(λ) + 1 mod 2 one has ai = 0.



10614 S Igonin

Theorem 3. For any A ∈ Mk(F) we have the following:

(1) The matrices A and At are similar.
(2) The matrices A and −At are similar if and only if each invariant factor of A is skew. In

this case the characteristic polynomial is also skew. In particular, in the case charF �= 2
we have trA = 0 and, if k is odd, det A = 0.

Remark 1. Note that in the case charF = 2 the second statement of this theorem as well as
theorem 2 are trivial.

Proof. Consider canonical decomposition (25) for A. Taking the transpose, we obtain

At − λI = C2
tDC1

t (26)

which is a canonical decomposition for At , since C1
t , C2

t are clearly unimodular. Therefore,
the invariant factors of At are the same, which, by proposition 1, implies that A and At are
similar.

Multiplying (26) by −1 and substituting −λ in place of λ, we obtain

−At − λI = −C2
t (−λ)D(−λ)C1

t (−λ). (27)

Denote C′
1 = −C2

t (−λ), C ′
2 = T C1

t (−λ) and D′ = D(−λ)T , where T ∈ Mk(F) is the
diagonal matrix with the entries [T ]ii = (−1)deg[D]ii . From (27) we obtain the canonical
decomposition −At − λI = C ′

1D
′C ′

2 for −At . According to proposition 1, A and −At are
similar if and only if D′ = D, which says that all the invariant factors [D]ii of A are skew. In
this case the characteristic polynomial is also skew, since from (25) it is evidently equal to the
product of the invariant factors multiplied by (−1)k. �

6. Necessary conditions for the existence of higher conservation laws

According to theorem 1, a necessary condition for the existence of conservation laws for (9) of
order greater than O is that there is a nonzero m×m matrix Sχ with entries from F[q1, . . . , qn]
such that (20) holds. Let us treat A and Sχ as matrices with entries from the field F of rational
functions in n variables q1, . . . , qn. Then theorem 2 implies the following.

Theorem 4. If N + h is odd and system (9) possesses a conservation law of order greater
than O, then the characteristic polynomial d(λ) = det(A − λI) and the polynomial d(−λ)

have a common divisor of positive degree. Equivalently, there are eigenvalues λ1, λ2 of A

(possibly in the algebraic closure of F) such that λ1 + λ2 = 0.

Remark 2. Evidently, introducing the new dependent variables

ui,s = ∂sui

∂ts
i = 1, . . . ,m s = 0, . . . , h − 1

we can rewrite (9) in the usual evolution form. But if h > 1 then the symbol on the right-
hand side of the obtained evolution system has zero determinant and, therefore, automatically
satisfies the condition in theorem 4, even if the initial system does not meet this condition.
Therefore, it is essential to consider the generalized evolution form.

Analysing examples of known soliton equations, we can conjecture that for (9) to
be integrable there must exist higher order conservation laws with nonsingular matrix Sχ .
Therefore, it is worth formulating a necessary condition for the existence of such nonsingular
conservation laws. According to theorem 3 (2), we obtain the following criterion.
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Theorem 5. If N + h is odd and system (9) has a nonsingular conservation law of order
greater than O then all the invariant factors of the matrix A are skew. In this case its
characteristic polynomial is also skew. In particular, tr A = 0 and, if m is odd, det A = 0.

If m = 1 then A is a nonzero 1 × 1 matrix, and theorem 4 implies the following.

Theorem 6. A scalar equation (m = 1) of the form (9) with odd N + h cannot have
conservation laws of order greater than O.

Remark 3. To obtain stronger conditions, it is sometimes useful to write a system of PDEs
in several ways in the form (9). For example, for a scalar evolution equation ut = uxxx +
uyy + f (u, ux, uy, uxx) the condition is empty, since the sum of h = 1 and N = 3 is even.
But rewriting the equation in the generalized evolution form with respect to y as follows
uyy = −uxxx +ut −f (u, ux, uy, uxx), we see, according to theorem 6, that there are no higher
conservation laws.

Remark 4. If N + h is even then, according to theorem 3 (1), equation (20) is always solvable
and imposes no restrictions on the symbol A of (9). That is, equation (15) is solvable with
respect to the highest order terms. In this case, to obtain nontrivial conditions for (9) to have
higher conservation laws, deeper analysis of (15) is needed.

7. Examples

7.1. The viscous transonic equation

The nonlinear viscous transonic equation

utt = −uxxx + uxuxx − α

t
ut (28)

describes the asymptotic form of a gas flow in the sonic region (see [7, 9] and references
therein). The following conserved currents for (28) were found in [7](

ut t
α, uxx t

α − u2
x

2
tα

) (
ut t + (α − 1)u, uxxt − u2

x

2
t

)
. (29)

All other conserved currents mentioned in [7] are trivial.
Let us show that (29) span the whole space of conservation laws for (28). We have

L = D̄3
x + D̄2

x ◦ ux − D̄x ◦ uxx + D̄t ◦ α

t
= D̄3

x + uxD̄
2
x + uxxD̄x +

α

t
D̄t − α

t2
.

According to (19), one has O = −1. By theorem 6, since N + h = 5 is odd, the characteristic
χ of any conservation law is a function of x, t only. Equation (15) reads

χtt = χxxx + uxχxx + uxxχx +
α

t
χt − α

t2
χ.

This implies χx = 0 and

χtt = α

t
χt − α

t2
χ. (30)

The characteristics tα, t of conserved currents (29) span the space of solutions to (30).
Therefore, (29) span the space of conservation laws.
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7.2. Another equation for viscous transonic flows

The equation

vyy = 2vxt + vxvxx − vzz − µvxxx (31)

where µ is a nonzero real constant, models nonstationary transonic flows around a thin body
with the effects of viscosity and heat conductivity when the velocity of the gas is close to the
local speed of sound, see [5, 11] and references therein.

For this equation we obtain

L = µD̄3
x + 2D̄xD̄t − D̄2

z + vxD̄
2
x + vxxD̄x.

By definition (19), we have O = −1. According to theorem 6, since N + h = 5 is odd, the
characteristic χ of any conservation law is a function of x, y, z, t only. Equation (15) implies

χx = 0 χyy + χzz = 0. (32)

Each function χ satisfying (32) is indeed the characteristic of the conserved current

D̄y(χvy − χyv) + D̄z(χvz − χzv) + D̄x

(
µχvxx − 1

2χv2
x − 2χvt

) = 0. (33)

Therefore, any conserved current for (31) is equivalent to a conserved current of the form (33).

7.3. The Brusselator model

The Brusselator model governing certain chemical reactions is the following multidimensional
system

vt =
n∑

i=1

∂2v

∂x2
i

+ v2w − (b + 1)v + a wt = c

n∑
i=1

∂2w

∂x2
i

− v2w + bv (34)

where a, b and c �= 0 are real parameters [10, section 15.4]. By definition (16) we have

L =
(∑

i D̄
2
xi

+ 2vw − (b + 1) −2vw + b

v2 c
∑

i D̄
2
xi

− v2

)
.

The symbol A is diagonal with [A]11 = ∑
i q

2
i and [A]22 = c

∑
i q

2
i . By definition (19),

we have O = −1. By theorem 4, since [A]11 �= 0, [A]22 �= 0, and [A]11 + [A]22 �= 0, the
characteristic χ = (χ1, χ2) of any conservation law is a function of xi, t only. For such χ

equation (15) reads

−∂χ1

∂t
=

∑
i

∂2χ1

∂x2
i

+ (2vw − (b + 1))χ1 − (2vw − b)χ2

(35)

−∂χ2

∂t
= v2χ1 + c

∑
i

∂2χ2

∂x2
i

− v2χ2.

Evidently, (35) implies χ1 = χ2. Then (35) becomes

−∂χ1

∂t
=

∑
i

∂2χ1

∂x2
i

− χ1 −∂χ1

∂t
= c

∑
i

∂2χ1

∂x2
i

. (36)

Clearly, for c = 1 the only solution to (36) is χ1 = 0, while for c �= 1 the general solution is

χ1 = χ2 = G(xi) exp

(
ct

c − 1

)
(37)

where G(xi) is an arbitrary solution to the equation

G + (c − 1)
∑

i

∂2G

∂x2
i

= 0. (38)
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Each solution (37) is indeed the characteristic of the conserved current

D̄t

(
G exp

(
ct

c − 1

)
(v + w)

)
+

n∑
i=1

D̄xi

(
exp

(
ct

c − 1

)

×
(

∂G

∂xi

(v + cw) − G
(
vxi

+ cwxi

) − a

n

∫
G dxi

))
= 0.

Thus if c �= 1 then these conserved currents span the space of conservation laws; while if
c = 1 then there are no nontrivial conservation laws for (34).

7.4. The Belousov–Zhabotinskii system

This system describes certain chemical reactions and reads [10, section 15.4]

vt =
∑

i

∂2v

∂x2
i

+ v(1 − v − rw) + Lrw wt =
∑

i

∂2w

∂x2
i

− bvw − Mw.

Here r, L, b,M are real constants. Evidently, theorem 4 implies that this system does not
possess conservation laws of nonnegative order. Similarly to the above examples, analysis of
equation (15) for characteristics of order −1 shows that in the nonlinear case b �= 0 there are
no nontrivial conservation laws at all.
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